A Computational and Experimental Investigation of "Free" tert-Butylmethylene, a Carbene Stabilized by σ Bond Participation

Brian M. Armstrong, Michael L. McKee,* and Philip B. Shevlin*
Contribution from the Department of Chemistry, Auburn University, Auburn, Alabama 36849-5312

Received July 29, 1994. Revised Manuscript Received February 6, 1995^{\otimes}

Abstract

The reactivity of tert-butylmethylene, 1, has been explored computationally and experimentally by C atom deoxygenation of 2,2 -dimethyl-propanal, 5 . Ab initio calculations ([QCISD(T)/6-31+G(2d,p)]// MP2/6-31G(d)) indicate that intramolecular $\mathrm{C}-\mathrm{H}$ insertion to generate 1,1 -dimethylcyclopropane, 3, is more favorable than intramolecular C-C insertion to produce 2-methyl-2-butene, 4 ($\Delta H^{\ddagger} \mathrm{C}-\mathrm{c}-\Delta H^{\ddagger} \mathrm{C}-\mathrm{H}=3.7 \mathrm{kcal} / \mathrm{mol}(1 \mathrm{~atm}, 298 \mathrm{~K})$ and $\Delta S^{\ddagger} \mathrm{C}-\mathrm{C}-\Delta S^{\ddagger} \mathrm{C}-\mathrm{H}=0.5 \mathrm{eu}$). In agreement with these theoretical predictions, deoxygenation of 5 by C atoms at 77,158 , and 195 K yields only the $\mathrm{C}-\mathrm{H}$ insertion product 3 . The MP2 geometry of 1 reveals that this carbene is stabilized by participation of the neighboring $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds ($\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ angle $=79.2^{\circ}$). The enthalpy barrier to the loss of N_{2} from 2,2-dimethyl-1-diazopropane, 2, to generate 1 at the MP2/6-31G(d)+ZPC level was $32.7 \mathrm{kcal} / \mathrm{mol}$ in a reaction exothermic by $30.5 \mathrm{kcal} / \mathrm{mol}$. This decomposition of $\mathbf{2}$ did not show any tendency to bypass the free carbene in going to 3 and/or 4 .

Introduction

Like that of many carbenes, the reactivity of tert-butylmethylene, 1, appears to be dependent upon its method of generation. For example, photolysis of 2,2-dimethyl-1-diazopropane, 2, yields approximately equal amounts of the intramolecular $\mathrm{C}-\mathrm{H}$ insertion product 1,1 -dimethyl-cyclopropane, 3, and the $\mathrm{C}-\mathrm{C}$ insertion product 2 -methyl-2-butene, 4. ${ }^{1}$ However, thermolysis of 2 at 403 K gives 3 and 4 in a $9: 1$ ratio. ${ }^{1,2}$ Since the accepted explanation for this discrepancy is that a free carbene intermedi-

ate is not involved in one of these reactions, ${ }^{3}$ we have

[^0]investigated the energetics of the formation of both 3 and 4 from free carbene 1 computationally and have compared these results to products resulting from 1 generated by C atom deoxygenation of 2,2-dimethylpropanal, 5.

Computational Methods

All geometries were optimized at the $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$ and MP2/6-31G(d) levels. ${ }^{4}$ Vibrational frequencies were determined at both levels to determine the nature of the potential energy surface and to make zeropoint corrections (frequencies weighted by a 0.90 factor for $\mathrm{HF} / 6-31 \mathrm{G}-$ (d) and a 0.95 factor for MP2/6-31G(d). Single-point calculations were made at the $\operatorname{QCISD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d})$ and MP2/6-31+G(2d.p) levels on MP2/6-31G(d) geometries and combined ${ }^{5}$ to estimated relative energies at the $[\operatorname{QCISD}(\mathrm{T}) / 6-31+\mathrm{G}(2 \mathrm{~d}, \mathrm{p})]$ levels, which, when zero-point corrections have been added, will constitute our "standard" level. Table 1 shows energies of reactants, products, and transition states along with entropies and zero point corrections.

Heat capacities and entropy corrections were made using unscaled frequencies and standard statistical procedures ${ }^{6}$ to determine enthalpies and free energies at 298 K . Table 2 shows relative energies of relevant species along with thermodynamic values at 298 K .

Experimental Section

Reaction of Arc Generated Carbon Vapor with 5. The reactor design has been reported by Skell, Wescott, Goldstein, and Engel. ${ }^{7}$ In a typical reaction, 5 was condensed on the reactor walls at temperatures ranging from 77 to 195 K . Carbon was vaporized by striking an intermittent arc between two graphite rods attached to water-cooled brass electrodes and condensed on the walls of the reactor containing 5 at the appropriate temperature. This procedure was repeated 15 times with a total of 13.8 mmol of 5 and resulted in the loss of 63.1 mmol

[^1]Table 1. Absolute Energies (hartrees) and Zero-Point Energies ($\mathrm{kcal} / \mathrm{mol}$), Heat Capacity Corrections ($\mathrm{kcal} / \mathrm{mol}$), and Entropies (cal/(mol $\cdot \mathrm{K}$)) of Relevant Species ${ }^{a}$

	//6-31G(d)				//MP2/6-31G(d)					
	PG	HF/A	ZPE ${ }^{\text {b }}$	MP2/A	MP2/A	QCISD (T)/A	MP2/B	ZPE ${ }^{\text {b }}$	$C_{\text {p }}{ }^{\text {c }}$	S
$1\left(C_{1}\right)$	C_{1}	-195.027 28	89.24 (0)	-195.656 45	-195.661 33	-195.74767	-195.799 64	86.12 (0)	4.06	75.95
$1^{\prime}\left(C_{s}\right)$	Cs	-195.026 61	88.87 (1)	-195.654 64	-195.655 58	-195.746 72	-195.793 06	85.41 (1)	3.92	75.38
TS1/3	C_{1}	-195.008 04	89.11 (1)	-195.666 18	-195.661 15	-195.746 46	-195.799 98	85.68 (1)	3.69	73.76
TS1/4	C_{1}	-195.004 96	89.70 (1)	-195.65704	-195.657 89	-195.740 87	-195.79709	86.10 (1)	3.74	74.23
3	$C_{2 v}$	-195.132 72	92.41 (0)	-195.78801	-195.78870	-195.86782	-195.91697	88.70 (0)	3.62	72.06
4	$C_{\text {s }}$	-195.145 77	91.50 (0)	-195.793 84	-195.794 96	-195.878 56	-195.926 91	87.56 (0)	4.35	79.87
$1^{\prime \prime}\left({ }^{3} \mathrm{~A}^{\prime \prime}\right)$	$C_{\text {s }}$	-195.067 16	89.30 (0)	-195.674 30	-195.67500	-195.759 90	-195.806 38	85.98 (0)	4.23	79.19
2	$C_{\text {s }}$	-303.984 48	98.04 (0)	-304.96754	-304.972 24					
TS2/1+ \mathbf{N}_{2}	C_{1}	-303.95269	96.02 (1)	-304.91652	-304.91725					
N_{2}	D_{∞}	-108.94395	3.94 (0)	-109.248 19	-109.255 28					

${ }^{a}$ Basis set " A " is $6-31 \mathrm{G}(\mathrm{d})$. Basis set " B " is $6-31+\mathrm{G}(2 \mathrm{~d}, \mathrm{p})$. b Zero-point energy ($\mathrm{kcal} / \mathrm{mol}$). Number of imaginary frequencies in parentheses. ${ }^{c}$ Heat capacity corrections to 298 K .
Table 2. Relative Energies ($\mathrm{kcal} / \mathrm{mol}$) of Species on the $\mathrm{C}_{5} \mathrm{H}_{10}$ or $\mathrm{N}_{2} \mathrm{C}_{5} \mathrm{H}_{10}$ Potential Energy Surfaces ${ }^{a}$

	//HF/6-31G(d)			/MP2/6-31G(d)					thermo. value	
	HF	MP2	$\mathrm{MP} 2+\mathrm{ZPC}^{\text {b }}$	MP2/A	QCISD (T)/A	MP2/B	$[\mathrm{QCI} / \mathrm{B}]^{\text {c }}$	$[\mathrm{QCL} / \mathrm{B}]+\mathrm{ZPC}^{d}$	$\Delta H(298 \mathrm{~K})$	$\Delta S(298 \mathrm{~K})$
$1\left(C_{1}\right)$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$1^{\prime}\left(C_{s}\right)$	0.4	1.1	0.8	3.6	0.6	4.1	1.1	0.4	0.3	-0.6
TS1/3	12.1	-6.1	-6.2	0.1	0.8	-0.2	0.5	0.1	-0.3	-2.2
TS1/4	14.0	-0.4	0.0	2.2	4.3	1.6	3.7	3.7	3.4	-1.7
3	-66.2	-82.5	-79.7	-79.9	-75.4	-73.6	-69.1	-66.7	-67.1	-3.9
4	-74.4	-86.2	-84.2	-83.8	-82.1	-79.9	-78.2	-76.8	-76.5	3.9
1 (${ }^{4} \mathrm{~A}^{\prime \prime}$)	-25.0	-11.2	-11.2	-8.6	-7.7	-4.2	-3.3	-3.4	-3.2	3.2
2	0.0	0.0	0.0	0.0				$0.0{ }^{\text {e }}$		
TS2/1+N2	19.9	32.0	30.2	34.5				$32.7{ }^{\text {e }}$		
$1+\mathrm{N}_{2}$	8.3	39.5	35.1	34.9				$30.5{ }^{\text {e }}$		

[^2]of carbon from the graphite rods. Although this procedure results in lower yields than the standard cocondensation of carbon with substrate, ${ }^{7}$ it is necessary to ensure that the carbene is generated at the correct temperature and that gas-phase pyrolysis does not occur. At the conclusion of the reaction, volatile products were pumped from the reactor into a trap at 77 K . The contents of the trap were analyzed by GC and ${ }^{1} \mathrm{H}$ NMR to reveal 3 but no 4 . The use of authentic samples of 3 and 4 enabled us to estimate that 4 could have been detected if it were present in an amount equal to 0.3% of 3 . Typically, 3 was formed in 0.1% yield based on carbon lost from the graphite rods. Since much of the C is physically removed from the graphite rods as large chunks during the arcing process, this is a lower limit on the yield of 3 .

Results and Discussion

Since intramolecular rearrangements of carbenes proceed via the singlet state ${ }^{8}$ and much of the experimental work on carbene 1 involves initial generation of the singlet, ${ }^{9}$ our computational investigations have concentrated on the reaction coordinate for singlet 1. However, we have calculated the energy of triplet 1 and find that it is lower than that of the singlet by $3.4 \mathrm{kcal} / \mathrm{mol}$ at the $[\mathrm{QCISD}(\mathrm{T}) / 6-31+\mathrm{G}(2 \mathrm{~d}, \mathrm{p})] / / \mathrm{MP} 2 / 6-31 \mathrm{G}(\mathrm{d})+\mathrm{ZPC}$ level. At this level, the CH_{2} singlet-triplet splitting is calculated to be $10.8 \mathrm{kcal} / \mathrm{mol}$, an overestimation of about $2 \mathrm{kcal} / \mathrm{mol}$ with respect to experiment. ${ }^{10}$ If we assume that the $\mathrm{S}-\mathrm{T}$ splitting in $\mathbf{1}$ is overestimated by this same amount, the best guess for the $S-T$ in 1 is $1-2 \mathrm{kcal} / \mathrm{mol}$ in favor of the triplet. These results indicate that the singlet and triplet will be in thermal

[^3]equilibrium and intramolecular reactions will occur via the singlet.

An initial computational investigation of the energetics of the rearrangement of 1 demonstrated a marked sensitivity to electron correlation. Geometry optimization at the HF/6-31G(d) level gave barriers to $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ insertion of 12.1 and $14.0 \mathrm{kcal} / \mathrm{mol}$, respectively. Reoptimization of the geometries at the MP2/6-31G(d) level, without ZPC, lowered these barriers dramatically to only $0.1 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}-\mathrm{H}$ insertion and 2.1 $\mathrm{kcal} / \mathrm{mol}$ for $\mathrm{C}-\mathrm{C}$ insertion. Since carbene 1 has neither been trapped in an intermolecular reaction nor detected spectroscopically, these latter low activation barriers appear to best describe its chemistry. ${ }^{11}$

Geometry optimization of 1 was initially attempted with C_{s} symmetry ($\mathrm{H}-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ dihedral $=180^{\circ}$, Figure 1a) at the HF/6-31G(d) and the MP2/6-31G(d) levels. However, these searches led to structures which were found to be transition states as they had one negative eigenvector in their force constant matrices. A slight distortion of the C_{s} structures followed by geometry optimization at the $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$ and the MP2/6-31G(d) levels gave energy minima of C_{1} symmetry which were lower in energy than the C_{s} states by 0.4 and 3.6 $\mathrm{kcal} / \mathrm{mol}$, respectively. An examination of the MP2 optimized carbene (Figure lb) along with that of the transition state for $\mathrm{C}-\mathrm{H}$ insertion (TS1/3, Figure 1c) provides a rationale for the extremely low barrier calculated for the $\mathrm{C}-\mathrm{H}$ insertion. Inclusion of electron correlation at the MP2 level brings about a dramatic change in geometry in which the $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ angle is

[^4]

Figure 1. MP2/6-31G(d) geometries.
reduced from 100.0° to 79.8° (Figure 1b). The fact that this calculated geometry is strikingly similar to that of the transition state for $\mathrm{C}-\mathrm{H}$ insertion renders this reaction quite facile. Although there is a bit more geometric reorganization in going from 1 to the transition state for $\mathrm{C}-\mathrm{C}$ insertion (TS1/4, Figure 1d), similar arguments apply and rationalize the low barrier calculated for this rearrangement.

Since the minimum energy of 1 in Figure 1 b is reached by removing the symmetry constraints on the structure in Figure la, which is of quite different geometry, it is likely that Figure 1 b represents an energy minimum for 1 . The calculated MP2 geometry of 1 , with its considerable "bridged" character, is striking and may be rationalized when one considers that the factors that stabilize carbonium ions, with their empty p orbitals, also act to lower the energy of the corresponding isoelectronic carbenes. ${ }^{12}$ Carbene 1 is isoelectronic to a primary carbonium ion and it is well-known that such species, to the extent that they are energy minima at all, are stabilized by participation of neighboring σ bonds. A well-studied example is the n-propyl cation, 6, in which the lowest energy species is the corner protonated cyclopropane, 6a. ${ }^{13}$ Although the geometry of 7,

[^5]the carbonium ion exactly analogous to 1 , has not been explored

6; $\mathrm{R}=\mathrm{H}$
7; $\mathrm{R}=\mathrm{Me}$

computationally, a similar bridged species is expected. As the stability of carbonium ions increases in going from $1^{\circ} \rightarrow 2^{\circ} \rightarrow$ 3°, the need for neighboring σ bond involvement decreases and these species are less bridged. ${ }^{14}$ In order to demonstrate that this effect is also operative as carbene stability increases, we have calculated the geometry of tert-butylfluoromethylene (8, Figure 1e) at the MP2/6-31G(d) level. The fact that the $\mathrm{C}_{1}-$ $\mathrm{C}_{2}-\mathrm{C}_{3}$ angle increases from 79.8° to 100.8° in going from 1 to the more stable 8 (which is calculated to have C_{1} symmetry) indicates that the unusual geometry of $\mathbf{1}$ is due to stabilization of this relatively high energy carbene by σ bond involvement. Another indication that $\mathbf{1}$ is stabilized by bridging is the fact that its MP2 energy decreases by $3.1 \mathrm{kcal} / \mathrm{mol}$ in going from the HF to the MP2 geometry. In contrast, these same geometry changes bring about decreases in MP2 energies of 3 and 4 of only 0.6 and $0.4 \mathrm{kcal} / \mathrm{mol}$.

[^6]

Figure 2. LUMO of carbene 1.
Thus we feel that 1 adopts its unusual bridged geometry due to an interaction between the empty p orbital and a symmetric $\mathrm{C}-\mathrm{C}+\mathrm{C}-\mathrm{H} \sigma$ combination. This interaction is best visualized by examing the LUMO of 1 which is shown in Figure 2. Normally one would expect this orbital to be purely the carbene p orbital. Instead, the Figure reveals considerable mixing of this orbital with the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds of the bridging methyl. Of course, this bridging interaction will be most favorable when the p orbital is empty and one would not expect to observe significant bridging in triplet 1 with its singly occupied p orbital. An examination of the geometry of the triplet, which is calculated to have C_{s} symmetry (Figure 1f), shows a $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle of 109.3° bearing out this assumption.

This interesting stabilization of a carbene center by a neighboring σ bond is also reflected in calculations of the geometry of methylcarbene at the CCSD/TZ2P(f,d) level of theory by Ma and Schaefer. ${ }^{15}$ In this case, the interaction is with a neighboring $\mathrm{C}-\mathrm{H}$ bond and the $\mathrm{C}-\mathrm{C}-\mathrm{H}$ bond angle is calculated to be 95.4°. The fact that this angle is little changed from that calculated at the MP2/6-31G(d) level $\left(93.6^{\circ}\right)^{16}$ indicates that our geometry of 1 is reliably estimated at the MP2/ $6-31 \mathrm{G}(\mathrm{d})$ level. In analogy with the present results, Evenseck and Houk ${ }^{16}$ find that the $: \mathrm{C}-\mathrm{C}-\mathrm{H}$ angle in methylcarbene decreases by 8° in going from the RHF to the MP2 level.

Although the fact that 1 has such a low barrier to $\mathrm{C}-\mathrm{H}$ insertion leaves open the question of whether it is actually an energy minimum, we may nevertheless use the calculated differences in activation enthalpies and entropies for $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ insertion to predict ratios of products as a function of temperature. At the MP2/6-31G(d)/MP2/6-31G(d)+ZPC level, $\Delta H^{\ddagger} \mathrm{C}-\mathrm{c}-\Delta H^{\ddagger} \mathrm{C}-\mathrm{H}=2.5 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\ddagger} \mathrm{C}-\mathrm{c}-\Delta S^{\ddagger} \mathrm{C}-\mathrm{H}=$ 0.5 eu ; when the calculations are repeated at the [QCISD(T)/ $6-31+\mathrm{G}(2 \mathrm{~d}, \mathrm{p})] / / \mathrm{MP} 2 / 6-31 \mathrm{G}(\mathrm{d})+\mathrm{ZPC}$ level, $\Delta H^{\ddagger} \mathrm{C}-\mathrm{c}-\Delta H^{\ddagger} \mathrm{C}-\mathrm{H}$ $=3.7 \mathrm{kcal} / \mathrm{mol}(1 \mathrm{~atm}, 298 \mathrm{~K})$. These latter calculations predict that "free" carbene 1 will produce little of the $\mathrm{C}-\mathrm{C}$ insertion product 4 at moderate temperatures.

In order to test this prediction experimentally, we have generated 1 at low temperatures by the carbon atom deoxygen-

[^7]

Figure 3. MP2/6-31G(d) optimized geometry of 2 (a) and of transition state for loss of N_{2} from 2 (TS2/1) (b).
ation of 5 , a well-established route to carbenes ${ }^{2 e, 18}$ utilizing nitrogen-free precursors and thought to proceed via "free" carbenes. ${ }^{18}$ When arc-generated carbon is condensed onto a

layer of aldehyde 5 at 77,158 , and 195 K , only the $\mathrm{C}-\mathrm{H}$ insertion product 3 is detected by gas chromatography or ${ }^{1} \mathrm{H}$ NMR spectroscopy. Since the above QCISD(T) calculated activation parameters predict only 0.01% of 4 at 195 K and even less at lower temperatures, these experiments bear out the above computational predictions. Due to complications resulting from gas-phase pyrolysis, it is unfortunately impractical to carry out the C atom deoxygenation of 5 at higher temperatures at which detectable amounts of 4 are expected. ${ }^{19}$

However, loss of N_{2} from either 2 or the corresponding diazirine at elevated temperatures does generate both 3 and 4.1,2 For example, thermolysis of the diazirine precursor to 1 at 433 K gives a $7: 1$ ratio of $3: 4^{1}$ while our above calculated activation parameters predict a ratio of $68: 1$. Although these numbers represent a difference of only $1.9 \mathrm{kcal} / \mathrm{mol}$ in the calculated and experimental $\Delta \Delta G^{\ddagger}$, the difference between them may result

[^8]from a transition state for thermal loss of N_{2} in which the free carbene is bypassed, a process which has been postulated in other systems. ${ }^{3 \mathrm{c}, 18}$ In order to examine this possibility, we have investigated the thermal loss of N_{2} from 2 computationally. The enthalpy barrier to the loss of N_{2} from 2 at the MP2/6-31G(d) level was $32.7 \mathrm{kcal} / \mathrm{mol}$ in a reaction exothermic by $30.5 \mathrm{kcal} /$ mol. ${ }^{20}$ A comparison of the MP2/6-31G(d) geometries of 2 and the transition state for loss of N_{2} in Figure 3 shows a decrease in the $\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$ angle from 108° to 97° in going to the transition state. Thus, N_{2} loss is assisted by the neighboring $\mathrm{C}-\mathrm{C} \sigma$ bond. Since the geometry of the transition state for nitrogen loss resembles that of the carbene, there seems to be little tendency to bypass the carbene and proceed to 3 or 4 directly. In order to further examine the possibility that a transition state connecting 2 to 4 bypasses the free carbene, we have carried out an additional calculation starting with the MP2 geometry of the transition state leading from 1 to 4 (TS1/4) with the nitrogen $1.8 \AA$ from C_{2}, the $\mathrm{N}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ angle $=90^{\circ}$, and the $\mathrm{N}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$ dihedral $=180^{\circ}$. When this geometry was allowed to optimize in an HF transition state search, the N_{2} moved $3.7 \AA$ away and the remaining atoms adopted the HF geometry of TS1/4. Since this transition state appears to derive no benefit from a neighboring nitrogen, we conclude that loss of N_{2} from 2 leads to free carbene 1 rather than to $\mathbf{4}$ directly. Although we have not carried out analogous calculations starting from the diazirine, it is expected that the reaction will proceed through TS2/1 in Figure 3b and that similar arguments will apply. These computational investigations suggest that thermolysis of diazo compound 2 will proceed via the free carbene

[^9]and should produce little 4. However, up to 10% of 4 is observed in the thermolysis of $\mathbf{2}$ at temperatures where we would predict less than 2%. It is possible that 1 is nonstatistically energized ${ }^{21}$ when produced from 2 with the channel leading to $\mathrm{C}-\mathrm{C}$ insertion selectively populated. The fact that the atomic motions leading to TS2/1 are also those which will take this transition state directly to $\mathbf{4}$, lends credence to this idea. Alternately, the discrepancy between experiment and calculation may reflect either small inadequacies in the theoretical treatment or experimental difficulties in achieving completely uncatalyzed decompositions of 2 .

Conclusions

These investigations demonstrate that carbene 1 exists in a bridged geometry in which the carbene p orbital is stabilized by interaction with $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds of an adjacent methyl group. This interaction apparently serves to stabilize the carbene in much the same way that a carbocation is stabilized by bridging. Both the computational and experimental results indicate that the dominant reaction of free carbene 1 will be intramolecular $\mathrm{C}-\mathrm{H}$ insertion to produce 3. Reactions in which substantial amounts of the $\mathrm{C}-\mathrm{C}$ insertion product 4 are generated must have significant contributions from pathways which bypass a free carbene.

Acknowledgment. B.M.A and P.B.S. gratefully acknowledge support of this work through National Science Foundation grant CHE-9013240.

JA942495W

(21) This possibility has been raised by a referee. For a discussion of these effects in other systems see: Carpenter, B. K. Acc. Chem. Res. 1992, 25, 520.

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, March 15, 1995.
 (1) Chang, K.-T.; Shechter, H. J. Am. Chem. Soc. 1979, 101, 5082.
 (2) Other studies of 1 include: (a) Frey, H. M.; Stevens, I. D. R. J. Chem. Soc. 1965, 3101. (b) Mansoor, A. M.; Stevens, I, D. R. Tetrahedron Lett. 1966, 1733. (c) Fukushima, M.; Jones, M., Jr.; Brinker, U. H. Tetrahedron Lett. 1982, 23, 3211 . (d) Goldstein, M. J.; Dolbier, W. R., Jr. J. Am. Chem. Soc. 1965, 87, 2293. (e) Skell, P. S.; Plonka, J. H. J. Am. Chem. Soc. 1970, 92, 836.
 (3) In many cases this "noncarbene" intermediate is thought to be the electronically excited diazirine or diazo compound. (a) Moss, R. A.; Liu, W. J. Chem. Soc., Chem. Commun. 1993, 1597. (b) Modarelli, D. A.; Morgan, S.; Platz, M. S. J. Am. Chem. Soc. 1992, 114, 7034. (c) Chen, N.; Jones, M., Jr.; White, W. R.; Platz, M. S. J. Am. Chem. Soc. 1991, 113 , 4981. (d) Seburg, R. A.; McMahon, R. J. J. Am. Chem. Soc. 1992, 114, 7183. (e) Tomioka, H.; Kitagawa, H.; Izawa, Y. J. Org. Chem. 1979, 44, 3072. (f) Yamamoto, N.; Bernardi, F.; Bottoni, A; Olivucci, M.; Robb, M. A.; Wilsey, S. J. Am. Chem. Soc. 1994, 116, 2064. (g) Liu, M. T. H. Acc. Chem. Res. 1994, 27, 287.

[^1]: (4) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Wong, M. W.; Foresman, J. B.; Robb, M. A.; Head-Gordon, M.; Replogle, E. S.; Gomperts, R.; Andress, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 92/DFT (Rev.G.2), Gaussian, Inc., Pittsburgh, PA, 1993.
 (5) (a) Mckee, M. L.; Lipscomb, W. N. J. Am. Chem. Soc. 1981, 103, 4673. (b) Nobes, R. H.; Bouma, W. J.; Radom, L. Chem. Phys. Lett. 1982, 89, 497.
 (6) McQuarrie, D. A. Statistical Thermodynamics; Harper \& Row: New York, 1973.
 (7) The reactor is modeled after that described by: Skell, P. S.; Wescott, L. D., Jr.; Golstein, J. P.; Engel, R. R. J. Am. Chem. Soc. 1965, 87, 2829.

[^2]: ${ }^{a}$ Basis set " A " is $6-31 \mathrm{G}(\mathrm{d})$. Basis set " B " is $6-31+\mathrm{G}(2 \mathrm{~d}, \mathrm{p}) .{ }^{b}$ Zero-point correction calculated at the $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$ level and weighted by a 0.9 factor is included. ${ }^{c}$ Additivity approximation is used. $\Delta E[\mathrm{QCL} / \mathrm{B}]=\Delta E(\mathrm{QCISD}(\mathrm{T}) / \mathrm{A})+\Delta E(\mathrm{MP} 2 / \mathrm{B})-\Delta E(\mathrm{MP} 2 / \mathrm{A}) .{ }^{d}$ Zero-point correction calculated at the MP2/6-31G(d) level and weighted by a 0.95 factor is included. ${ }^{e}$ Relative energy calculated at the MP2/6-31G(d)//MP2/6-31G(d) level with zero-point correction made at the HF/6-31G(d) level and weighted by a 0.9 factor.

[^3]: (8) Nickon, A. Acc. Chem. Res. 1993, 26, 84.
 (9) Production of 1 by photolysis of 2 at 298 K with triplet photosensitizers gives $\mathbf{3}$ and $\mathbf{4}$ in ratios essentially identical to those of the thermolyses at $403-453 \mathrm{~K}$. ${ }^{1}$
 (10) Leopold, D. G.; Murray K. K.; Miller, A. E. S.; Lineberger, W. C. J. Chem. Phys. 1985, 83, 4849.

[^4]: (11) The more stable tert-butylchlorocarbene, which has a singlet ground state, has been observed and trapped. ${ }^{3 \mathrm{a}, 11 \mathrm{a}-\mathrm{c}}$ (a) Zuev, P. S.; Sheridan, R. S. J. Am. Chem. Soc. 1994, 116, 4123. (b) Moss, R. A.; Ho, G.-J. J. Am. Chem. Soc. 1990, 112, 5642. (c) Jackson, J. E.; Soundarajan, N.; Platz, M. S.; Liu, M. T. H. J. Am. Chem. Soc. 1988, 110, 5595.

[^5]: (12) This effect is well-documented in cyclopropylmethylene: Shevlin, P. B.; Mckee, M. L. J. Am. Chem. Soc. 1989, 111, 519 and references therein.
 (13) (a) Raghavachari, K.; Whiteside, R. A.; Pople, J. A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 5649. (b) Koch, W.; Schleyer, P. v. R.; Buzek, P.; Liu, B. Croat. Chem. Acta 1992, 65, 655.

[^6]: (14) Schleyer, P. v. R.; Cameiro, J. W. de M.; Koch, W.; Forsyth, D. A. J. Am. Chem. Soc. 1991, 113, 3990.

[^7]: (15) Ma, B.; Schaefer, H. F., III J. Am. Chem. Soc. 1994, 116, 3539. (16) Evanseck, J. D.; Houk, K. N. J. Phys. Chem. 1990, 94, 5518.
 (17) (a) Skell, P. S.; Havel, J.; McGlinchey, M. J. Acc. Chem. Res. 1973, 6, 97. (b) Shevlin, P. N. In Reactive Intermediates; Abramovitch, R. A., Ed.; Plenum Press: New York, 1980; Vol. I, pp 1-36.

[^8]: (18) Fox, J. M.; Gillen, J. E.; Jones, K. G. H.; Jones, M., Jr.; Shevlin, P. B.; Armstrong, B.; Sztyrbicka, R. Tetrahedron Lett. 1992, 33, 5021.
 (19) A previous investigation of the deoxygenation of 5 by carbon gave 3 and 4 in a $15.6: 1$ ratio. ${ }^{2 d}$ We feel that this small amount of 4 is due to gas-phase reaction brought about by too rapid introduction of substrate. We have avoided this problem by condensing 5 completely prior to condensing the carbon.

[^9]: (20) The calculated (MP2/6-31G(d)//3-21G+ZPC) barrier to formation of cyclopropylmethylene from the diazo compound was ca. $25.5 \mathrm{kcal} / \mathrm{mol}$. Chou, J.-H.; McKee, M. L.; De Felippis, J.; Squillacote, M.; Shevlin, P. B. J. Org. Chem. 1990, 55, 3291.

